Properties of Hierarchical Archimedean Copulas

نویسندگان

  • Ostap Okhrin
  • Yarema Okhrin
  • Wolfgang Schmid
چکیده

In this paper we analyse the properties of hierarchical Archimedean copulas. This class is a generalisation of the Archimedean copulas and allows for general non-exchangeable dependency structures. We show that the structure of the copula can be uniquely recovered from all bivariate margins. We derive the distribution of the copula value, which is particularly useful for tests and constructing confidence intervals. Furthermore, we analyse dependence orderings, multivariate dependence measures and extreme value copulas. Special attention we pay to the tail dependencies and derive several tail dependence indices for general hierarchical Archimedean copulas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on a Generalized Archimedean Family of Copulas

Durante et al. (2007) introduced a class of bivariate copulas depending on two generators which generalizes some known families such as the Archimedean copulas. In this paper we provide some result on properties of this family when the generators are certain univariate survival functions.

متن کامل

Cesaro Supermodular Order and Archimedean Copulas

In this paper, we introduce a new kind of order, Cesaro supermodular order, which includes supermodular order and stochastic order. For this new order, we show that it almost fulfils all desirable properties of a multivariate positive dependence order that have been proposed by Joe (1997). Also, we obtain some relations between it with other orders. Finally, we consider different issues related...

متن کامل

On Generators in Archimedean Copulas

This study after reviewing  construction methods of generators in Archimedean copulas (AC),  proposes several useful lemmas related with generators of AC. Then a new trigonometric Archimedean family will be shown which is based on cotangent function. The generated new family is able to model the low dependence structures.

متن کامل

Hierarchical Kendall copulas: Properties and inference

While there is substantial need for dependence models in higher dimensions, most existing models quickly become rather restrictive and barely balance parsimony and flexibility. Hierarchical constructions may improve on that by grouping variables in different levels. In this paper, the new class of hierarchical Kendall copulas is proposed and discussed. Hierarchical Kendall copulas are built up ...

متن کامل

Hierarchical Archimedean Copulae over time dependence with applications to Financial Data

In the classical multivariate time series models the residuals are assumed to be normally distributed. However the assumption of normality is rarely consistent with the empirical evidence and leads to possibly incorrect inferences from financial models. The copula theory allows us to extend the classical time series models to nonelliptically distributed residuals. In this paper we analyze the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009